Uniform convergence in the mapping class group
نویسندگان
چکیده
We characterize convex cocompact subgroups of the mapping class group of a surface in terms of uniform convergence actions on the zero locus of the limit set. We also construct subgroups that act as uniform convergence groups on their limit sets, but are not convex cocompact.
منابع مشابه
ar X iv : 0 70 4 . 25 87 v 2 [ m at h . G T ] 2 6 A ug 2 00 7 Uniform convergence in the mapping class group Richard
We characterize convex cocompact subgroups of the mapping class group of a surface in terms of uniform convergence actions on the zero locus of the limit set. We also construct subgroups that act as uniform convergence groups on their limit sets, but are not convex cocompact.
متن کاملUniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملCONVERGENCE THEOREMS FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN THE INTERMEDIATE SENSE FOR THE MODIFIED NOOR ITERATIVE SCHEME
We study the convergence of the modified Noor iterative scheme for the class of asymptotically pseudocontractive mappings in the intermediate sense which is not necessarily Lipschitzian. Our results improves, extends and unifies the results of Schu [23] and Qin {it et al.} [25].
متن کاملStatistical uniform convergence in $2$-normed spaces
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
متن کامل